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Abstract

Estimation methods for mutation rates (or probabilities) in Luria-Delbrück fluctuation analysis usually assume that the final
number of cells remains constant from one culture to another. We show that this leads to systematically underestimate the
mutation rate. Two levels of information on final numbers are considered: either the coefficient of variation has been
independently estimated, or the final number of cells in each culture is known. In both cases, unbiased estimation methods
are proposed. Their statistical properties are assessed both theoretically and through Monte-Carlo simulation. As an
application, the data from two well known fluctuation analysis studies on Mycobacterium tuberculosis are reexamined.
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Introduction

Since the pioneering work of Luria and Delbrück [1],

fluctuation analysis has been the object of many studies: see [2–

7] for reviews. In the past twenty years, the stress has been put on

the estimation of the expected number of mutations, for which

reliable methods are now available [8–15]. However, as Stewart

puts it (p. 1140 of [4]):

The parameter L [expected number of mutations] is not, in

itself, of biological interest because the experimenter can

vary it at will simply by changing the size of the culture

vessel or the richness of the medium. What he really wants

to know is not L, but the mutation rate.

Deriving a mutation rate (i.e. the probability for a mutation to

occur upon any given cell division) from an expected number of

mutations seems easy: the former is the quotient of the latter by the

final number of cells at the end of the experiment. The problem is

the definition given to ‘‘final number of cells’’. The simplest view is

expressed by Kendal and Frost (p. 1062 of [2]).

N is obtained by averaging the final number of cells from

each parallel culture.

Other authors have developed a more cautious approach, like

Foster (p. 198 of [5]).

The validity of the mutation rate calculation requires that Nt

be the same in each culture. Usually, but not always, this can

be accomplished by growing cells to saturation. If achieving

an uniform Nt is a problem, the cell number in each culture

can be monitored before mutant selection by measuring the

optical density or by counting cells microscopically (e.g.

using a Petroff-Hausser chamber). Because there is currently

no valid method to correct for different Nt’s, deviant

cultures must be eliminated from the analysis.

Even under the most careful monitoring, final numbers of cells

vary [16]. Yet, final number data are rarely reported in fluctuation

analysis experiments, although exceptions exist such as [17,18].

Theoretical models considering variations in the population size

have previously been proposed by Angerer [19] and Komarova et

al. [20]. Yet, to the best of our knowledge, Foster’s assertion that

‘‘there is currently no valid method to correct for different Nt’s’’

remains true to this date. This paper proposes several such

methods.

As we shall see, dividing an estimated expected number of

mutations by a mean final number of cells, induces a negative bias

on mutation rates. Not only the mutation rate, but also the

variance of the estimator are underestimated, thus potentially

inducing wrong conclusions in statistical testing. Two levels of

knowledge on the fluctuations of final numbers are considered.

Either the mean and variance of final numbers have been

estimated separately, or the final number is known for each

culture. In the first case, if p̂p denotes the estimate of the mutation

rate assuming constant final numbers, the unbiased estimate p̂pub is

obtained by:
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where m and C denote the mean and coefficient of variation of the

final number of cells. When final numbers are known for all

cultures, better results are obtained by the Maximum Likelihood

method. The qualities of the proposed estimators have been

assessed on a simulation study. The impact on real experiments is

discussed, using Mycobacterium tuberculosis data published by David

[17], and Werngren & Hoffner [21]. Our R [22] implementation

of the simulation function and the different estimators is provided

in File S1.

Results

Simulation experiments
Six different estimates of p were computed on 1000 simulated

samples of 50 couples mutant counts – final numbers. Our choice

for the sample size was motivated by two opposite reasons. On the

one hand, sample sizes in practice rarely exceed a few tens. On the

other hand, confidence interval calculations are all based on

asymptotic normality, which requires the sample size to be large

enough. A sample size of 50 seemed a reasonable compromise.

Boxplots for the estimates are represented on Figure 1. The first

boxplot corresponds to the 1000 estimates by the p0-method,

assuming the mean final number is known; it is negatively biased

as predicted by the theory. The next boxplot represents estimates

from the Maximum Likelihood method with known mean final

number; it is coherent with the previous one, and similarly biased

as expected. On the next two boxplots, the estimates have been

multiplied by the unbiasing factor (1). The unbiasing is correct for

both methods. For the last two boxplots, each estimate has been

computed using the 50 couples with no prior knowledge on the

mean and coefficient of variation of final numbers. The best results

are obtained by the maximum likelihood method (last boxplot).

The p0-method (label MLP0) performs nearly as well. Since the

last two boxplots do not use any prior information, one could have

expected their dispersions to be higher than those of the first four.

This was not the case, which proves that prior knowledge on the

distribution of N is not a real improvement over measuring final

numbers for each culture.

Each estimation method returns a (theoretical) standard

deviation, from which confidence intervals can be computed. It

is is based on a large sample approximation. The sample size in

current fluctuation analysis experiments usually ranges from 20 to

50. Since the estimated standard deviation is of high importance

for statistical decision, it was necessary to check whether

theoretical standard deviations matched observations. On the

same samples, the empirical standard deviation of the 1000

estimates was computed, and compared to the mean value of

theoretical standard deviations. For each of the estimators, the

theoretical standard deviation was smaller than the observed one;

yet, the relative error was smaller than 5%, which validates the

theoretical value. For instance, the empirical standard deviation

for the maximum likelihood estimate (rightmost boxplot of

Figure 1) was 1:85|10{10, whereas the theoretical value was

1:80|10{10.

Published data sets
In the two references studied here [17,21], the authors used

Luria & Delbrück’s method of the mean. Luria & Delbrück [1]

themselves had remarked that the method is very sensitive to the

size of jackpots and induces important biases; see also Lea &

Coulson [23], and Pope et al. [6] for a more recent reference.

Table 1 reports mutation rate estimates for the data in Table 1

of David [17]. Since detailed data were not avaible, only the p0-

method could be used. The second column contains the author’s

estimates. The next two columns contain the unbiased p0-estimate

and its 95% confidence interval. Observe that, even though

confidence intervals are large due to the small sample sizes, the

author’s estimates are outside the confidence interval in 5 cases out

Figure 1. Estimates of a mutation rate on 1000 samples of size 50 of pairs mutant counts – final counts. The horizontal line marks the
true value. The first two boxplots correspond the traditional p0- and ML methods, which estimate the expected number of mutations from the sample
of mutant counts, then divide by the final number of cells, supposed as known. On the next two boxplots, the estimates have been multiplied by the
unbiasing factor (1). The last two boxplots use the full samples of pairs but no prior knowledge on final numbers. The best results are obtained by the
maximum likelihood method (last boxplot). The p0-method (label MLP0) performs nearly as well.
doi:10.1371/journal.pone.0101434.g001
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of 10. The most important discrepancies are due the author’s use

of a strongly biased estimation method: when large jackpots

appear in the mutant counts, as in the Ethambutol cases (last two

lines of Table 1), the method of the mean may overestimate p by

several orders of magnitude. The main conclusion of [17] was a

significant difference in mutation rates, depending on the drug

(Isoniazid, Streptomycin, Rifampin, or Ethambutol). Indeed that

difference is confirmed by an ANOVA of the estimated mutation

rates (P~0:012).

Table 2 of David [17] contains two paired samples of mutant

counts and final numbers. All possible estimates were computed.

Values ranged between 1:81|10{10 and 2:14|10{10. The two

values that we consider most reliable, obtained by the maximum

likelihood method, were very similar: 1:98|10{10 and

1:97|10{10. The estimate reported by the author is

7:53|10{10. Again, the difference is due to the bias induced by

the author’s estimation method.

Table 2 reports mutation rate estimates by the ML method,

from data in Table 1 of Werngren & Hoffner [21]. The second

column contains the authors’ estimates, calculated by Luria &

Delbrück method of the mean. The next two columns contain the

unbiased ML estimate and its 95% confidence interval. Except for

two strains, the authors’ estimate is outside the confidence interval.

Here, the method of the mean used by the authors has

underestimated the mutation rate, because of the very small

number of jackpots in the data. The main conclusion of [21] was

that no significant difference had been observed between non-

Beijing strains (first seven lines) and Beijing strains (last six lines).

Actually, the average mutation rate over the first seven lines is

4:37|10{8, over the last six lines it is 2:69|10{8. The

difference is significant at threshold 5% (Welsh Two Sample t-

test, P~0:047).

Discussion

In any estimation problem, three levels must be distinguished:

the reality which is and will remain unknown, the mathematical

model which involves more or less realistic hypotheses, and the

estimation method. Minimal requirements for an estimator are

consistence (outputs should be close to the unknown value of the

parameter), and a computable asymptotic variance (to allow

statistical inference). Since there is no way to validate all

mathematical hypotheses that define the model, another quality

is desirable: robustness. Indeed, designing an estimator for a given

model and applying it to a different one usually induces a bias: the

smaller the bias, the more robust the estimator. For mutation rate

estimates, several sources of bias have been identified, such as cell

deaths [19,24–26], unknown division time distribution [15], etc.

Since there is no way to double check estimates on real data, the

usual approach for evaluating an estimation method consists in

repeating in silico experiments, i.e. simulate mathematical models

for a given value of the parameter, estimate that value repeatedly,

and study the distribution of the obtained estimates. A general

simulation algorithm described in [15] permits extensive Monte-

Carlo experiments.

Usually, only the expected number of mutations is considered as

the parameter of interest. Among the many estimation procedures

that have been proposed, we have focused on the p0-method and

the maximum likelihood (ML); they satisfy the basic requirements

of statistical inference. As for most other parametric estimation

problems, the ML method is the most precise. Provided cell deaths

are neglected, the p0-method stands out as the most robust.

All estimation methods are valid only if all observed mutant

counts come from the same Luria-Delbrück distribution, i.e. if they

have been obtained under a fixed expected number of mutations.

However, the parameter of real interest which must be considered

as fixed, is the mutation rate. For each culture the expected

number of mutations is the product of the mutation rate by the

final number of cells. Since final numbers vary from one culture to

another, so do expected numbers of mutations. As shown here,

applying the p0- and ML procedures to the fluctuating final

number case as if final numbers were constant, induces a bias.

Two solutions have been proposed. In the case where the final

numbers of each culture are unknown, but a coefficient of

variation is available, an unbiasing factor has been defined, and

validated on simulation experiments. The unbiasing factor (1)

measures the error induced by neglecting final number fluctua-

tions: the relative error is of order aC2=2 where a~pm is the

expected number of mutations and C the coefficient of variation of

final numbers.

The more favorable case is when final numbers are available.

Of course measuring the final number of cells for each culture

leads to reducing the volume of the culture in which the mutants

are counted, and therefore underestimating mutations. This

Table 1. Mutation rate estimates from Table 1 of [17].

Determination Author p0-method Confidence interval

Isoniazid 1 1:84|10{8 2:2|10{8 ½5:8|10{9 ; 3:8|10{8�
Isoniazid 2 3:5|10{8 1:1|10{8 ½5:3|10{9 ; 1:7|10{8�
Isoniazid 3 1:7|10{8 1:3|10{8 ½5:1|10{9 ; 2:1|10{8�
Isoniazid 4 3:2|10{8 8:6|10{9 ½4:7|10{9 ; 1:2|10{8�
Streptomycin 1 0:9|10{8 5:2|10{9 ½1:9|10{9 ; 8:5|10{9�
Streptomycin 2 5:0|10{8 6:6|10{9 ½3:9|10{9 ; 9:2|10{8�
Rifampin 1 1:8|10{10 3:2|10{10 ½0:0|10{10 ; 9:4|10{10�
Rifampin 2 2:7|10{10 2:9|10{10 ½0:0|10{10 ; 5:8|10{10�
Ethambutol 1 0:7|10{7 3:3|10{9 ½9:1|10{10 ; 5:6|10{9�
Ethambutol 2 1:3|10{7 3:8|10{9 ½2:3|10{9 ; 5:3|10{9�

The author’s estimates were calculated by Luria and Delbrück’s method of the mean. Our estimates were calculated by the p0-method. The bias correction (1) was
applied, with a coefficient of variation C~0:35 on final numbers. The 95% confidence interval is given in the last column.
doi:10.1371/journal.pone.0101434.t001
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should be accounted for, by proportionally adjusting the estimates

of final numbers. When coupled mutant counts – final numbers

have been collected, variants of the p0- and ML methods are

available. Both yield quite precise estimates. As in the constant

final number case, the p0-method is more robust, and almost as

precise as the ML method. Only the ML method can output

relative fitness estimates.

Does the correction for fluctuating final numbers have an

impact on the interpretation of the data? We have reexamined the

data in two examples chosen from the literature. In both cases,

important discrepancies were oberved, that do not only come from

neglecting final numbers: they are essentially due to the author’s

use of Luria-Delbrück’s method of the mean, which is very

sensitive to jackpots, and can bias the mutation rate estimate by

several orders of magnitude. In David’s paper, the ethambutol

mutation rate had been estimated around 10{7 whereas our

estimation is of order 10{9. The demonstration is even more

striking in Werngren and Hoffner’s paper. They compared

mutation rate between Beijing and non Beijing M. tuberculosis

strains and concluded that it was not different and thus could not

explain the strong association between Beijing strains and

multidrug resistance phenotype. However we re-calcutated the

mutation rate and showed that it was significantly higher for

Beijing vs. non-Beijing strains. This result is consistent with a

recent paper [27] showing that lineage 2 (Beijing) M. tuberculosis

strains have a higher mutation rate than lineage 4 (non-Beijing)

strains. Given the importance of mutation rates on the risk of

selection of drug resistant mutants, an accurate evaluation is very

important. We hope that our results will help improving precision

in the evaluation of mutation rates.

Conclusion

Dealing with classical estimation methods, Foster [5] was right

in recommending that cultures with deviant final numbers be

eliminated from fluctuation analysis. Indeed, under varying final

numbers those methods underestimate mutation rates, and the

relative bias is proportional to the squared coefficient of variation

of final numbers. Yet, instead of being discarded as a nuisance,

variations in final numbers should be added to the available

information to improve estimation: the best mutation rates

estimates are obtained when couples mutation count – final

number are used.

Two possibilities exist. If mutant counts contain enough zeros

(say 10% or more), the p0-method gives reliable results in virtually

null computer time, and is robust both to relative fitness and

division time distribution changes. If mutant counts do not contain

enough zeros, or if an estimate of relative fitness is sought for, then

the joint estimation of the mutation rate and relative fitness should

be carried through by the maximum likelihood method.

We are currently working on an optimized implementation of

these methods into a forthcoming R [22] package that will be

made freely available.

Methods

Here, N denotes the final number of cells in a Luria-Delbrück

fluctuation analysis experiment. Contrarily to the traditional point

of view [5], fluctuations on N are considered, i.e. N is viewed as a

random variable. In the following subsections, different levels of

information are assumed on the distribution of N: either its

Laplace transform is known, or only its expectation and variance

are known, or nothing is known, but the final numbers of cells

have been measured together with mutant counts for each

experiment. Notations for the different parameters are summa-

rized in Table 3.

As usual, adding a ‘hat’ to the notation of a parameter denotes

an estimator of that parameter. We shall consider only strongly

consistent, asymptotically Gaussian estimators. If h is any

parameter, and s denotes the sample size, then
ffiffi
s
p

(ĥh{h)
converges to a centered Gaussian distribution as s tends to

infinity. The variance of that distribution, called asymptotic

variance of ĥh, will be denoted by vĥh.

In the next four subsections, the focus is on the so-called p0-

method, introduced by Luria and Delbrück [1] (see also [5,28]).

The problem of jointly estimating the mutation rate p and the

Table 2. Mutation rate estimates from Table 1 of [21].

Strain Authors ML method Confidence interval

H37Rv 8:6|10{9 4:8|10{8 ½3:0|10{8 ; 6:6|10{8�
E 865/94 2:4|10{8 7:6|10{8 ½4:3|10{8 ; 1:1|10{7�
E 729/94 9:6|10{9 2:3|10{8 ½1:3|10{8 ; 3:3|10{8�
E 740/94 1:1|10{8 3:6|10{8 ½2:2|10{8 ; 5:0|10{8�
E 1221/94 6:5|10{9 1:3|10{8 ½7:3|10{9 ; 1:9|10{8�
E 1449/94 1:5|10{8 4:8|10{8 ½2:9|10{8 ; 6:8|10{8�
Harlingen 1:4|10{8 6:2|10{8 ½3:8|10{8 ; 8:6|10{8�
E 26/95 1:3|10{8 2:3|10{8 ½1:3|10{8 ; 3:4|10{8�
E 80/95 7:9|10{9 2:8|10{8 ½1:6|10{8 ; 4:0|10{8�
E 55 94 1:0|10{8 2:0|10{8 ½9:7|10{9 ; 3:1|10{8�
E 26/94 9:4|10{9 3:2|10{8 ½2:2|10{8 ; 4:3|10{8�
E 3942/94 1:5|10{8 3:9|10{8 ½2:2|10{8 ; 5:6|10{8�
E 47/94 1:2|10{8 1:8|10{8 ½9:2|10{9 ; 2:8|10{8�

The authors’ estimates were calculated by Luria and Delbrück’s method of the mean. Our estimates were calculated by the maximum likelihood method under
exponential division times. The bias correction (1) was applied, using a coefficient of variation C~0:44 on final numbers. The 95% confidence interval is given in the last
column.
doi:10.1371/journal.pone.0101434.t002
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relative fitness r by he maximum likelihood method will be treated

after.

Unbiasing p0-estimates
The final number of cells N is viewed as a random variable with

probability distribution function G on ½0,z?). The distribution of

N is supposed to be known and its Laplace transform is denoted by

L.

L(p)~ e{pN
� �

~

ðz?

0

e{pt dG(t) :

The expectation and variance of N are denoted by m and s2

respectively. Let U be a random variable, with uniform

distribution on ½0,1�, independent from N. The indicator X for

the mutant count being null is defined as:

X~ Uve{pN ,

where A denotes the indicator of event A (1 if A is true, 0 else).

Therefore:

½X~1 DN~t �~e{pt ,

and

p0~ ½X~1 �~L(p):

Consider a sample of size s, i.e. s independent copies of X :

(X1, . . . ,Xs). Denote by p̂p0 the empirical mean of the Xi’s, i.e. the

relative frequency of zeros among mutant counts.

p̂p0~
1

s

Xs

i~1

Xi :

By the central limit theorem,
ffiffi
s
p

(p̂p0{p0) converges in

distribution to the centered Gaussian distribution with variance

p0(1{p0), i.e. p̂p0 has asymptotic variance vp̂p0
~p0(1{p0).

The p0-method consists of estimating the mean number of

mutations a by the negative logarithm of p̂p0, then divide by m to

obtain an estimate of p.

âa0~{ log (p̂p0) and p̂p0~
âa0

m
:

Actually, âa0 is a consistent estimator of:

{ log (p0)~{ log L(p)ð Þ :

If N is constant, then L(p)~e{pm~e{a, and { log (p0)~a: in

that case âa0 is asymptotically unbiased. If N is not constant,

because of the convexity of the exponential, and by Jensen’s

inequality, { log L(p)ð Þ is smaller than a, i.e. âa0 underestimates a,

and therefore p̂p0 underestimates p.

Denote by L{1 the inverse of L (assumed to be injective).

Define a new estimator of p by:

p̂pub~L{1 e{mp̂p0
� �

~L{1(p̂p0) : ð2Þ

By construction, p̂pub is a strongly consistent estimator of p, and

therefore it is asymptotically unbiased. Its asymptotic variance is

obtained by the traditional delta-method (see e.g. [29]):ffiffi
s
p

(p̂pub{p) converges in distribution to the univariate centered

Gaussian distribution with variance:

vp̂pub
~(L0(p)){2p0(1{p0) :

As expected, if N is constant at m, then p0~L(p)~e{pm,

p̂pub~p0, and

vp̂pub
~vp̂p0

~
1{p0

m2p0

This formula is not new: the asymptotic variance of p̂p0 appeared

as formula 35, p. 276 of Lea & Coulson [23]; see also [5,28].

Table 3. Parameters and notations for the mathematical model.

known parameters

N random final number of cells

L(p)~ ½e{pN � Laplace transform of N

m~ ½N� expectation of N

s~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½N�

p
standard-deviation of N

C~s=m coefficient of variation of N

unknown parameters

p mutation rate

a~pm expected number of mutations

p0~e{a probability of zero mutant

r relative fitness of normal cells compared to mutants

Notations for known and unknown parameters: N denotes a generic random final number of cells.
doi:10.1371/journal.pone.0101434.t003
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Families of distributions for which explicit expressions of p̂pub

and vp̂pub
can be obtained are scarce. Two examples are given

below.

Gamma distributions. They depend on two parameters,

usually denoted by a and l. The expectation and variance are:

m~
a

l
and s2~

a

l2
:

The squared coefficient of variation is the inverse of the shape

parameter: C2~1=a. The Laplace transform at p is:

L(p)~
l

lzp

� �a

:

One gets:

p̂pub~l p̂p
{1

a
0 {1

� �
and vp̂pub

~p
{2

a
0 vp̂p0

:

Expressed in terms of âa0, m and C:

p̂pub~
1

mC2
exp (âa0C2){1
� �

and vp̂pub
~ exp (aC2)vp̂p0

:

Inverse Gaussian distributions. They depend on two

parameters, l and m. The parameter m is the expectation, and

the variance is s2~m3=l. The squared coefficient of variation is

C2~m=l. The Laplace transform at p is:

L(p)~ exp
l

m
1{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z

2m2p

l

r ! !
:

One gets:

p̂pub~{
log (p̂p0)

m
z

log2 (p̂p0)

2l
,

and

vp̂pub
~ 1{

m

l
log (p0)

	 
21{p

m2p0

~ 1{
m

l
log (p0)

	 
2

vp̂p0
:

Expressed in terms of âa0 and C2, these expressions become:

p̂pub~p̂p0 1z
âa0C2

2

� �
,

and

vp̂pub
~ 1zaC2
� �2

vp̂p0
:

As we shall see in the next subsection, the last two expressions,

which are exact for inverse Gaussian distributions, hold as a first

order approximation for any distribution.

First order approximation
If the probability distribution of N is known, the bias can be

exactly corrected by inverting the Laplace transform of N.

However, this is only a theoretical viewpoint. The best that can be

hoped for in practice is an estimate of the expectation of N

together with its variance. It turns out that whatever the

distribution of N, and provided the product of the coefficient of

variation by the expected number of mutations remains relatively

small, the bias can be corrected. Here, we only assume that the

first two moments of N, m and s2 are known, but the full

distribution of N , and in particular its Laplace transform, remains

unknown. As we have seen, the expectation of âa0 is { log (L(p)).
Consider the terms of the series expansion of L(p) in p up to order

2 (see e.g. [30]):

L(p)~1{mpz
½N2�
2

p2z � � �

Taking negative logarithm,

{
log (L(p))

m
~p{

s2

2m
p2z � � �

Expressed in terms of a and C2, the relative bias is:

1{
s2

2m
p~1{

aC2

2
:

To unbias p̂p0, one must divide by the relative bias or (as a first

order approximation), multiply by 1z
âa0C2

2
. Hence (1):

p̂pub~p̂p0 1z
âa0C2

2

� �
:

The asymptotic variance, obtained through the delta-method is:

vp̂pub
~ 1zaC2
� �2

vp̂p0
: ð3Þ

These expressions are exact for inverse Gaussian distributions,

only approximations for any other distribution.

To assess the validity range of the unbiasing factor, a simulation

experiment was conducted. For the same value of p~10{9,

samples of final numbers were simulated with a log-normal

distribution with mean m~a=p and coefficient of variation C. The

values of a ranged from 0:1 to 2, those of C from 0 to 1. The

results are shown on Figure 2. Red curves show the actual relative

bias of the p0-method; for blue curves, the bias has been corrected

by the unbiasing factor (1). The correction maintains the bias

under acceptable values even for relatively large a and C.
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The p0-method by maximum likelihood
In this section, nothing is assumed about the distribution of N.

A couple (X ,N) of random variables is considered, where X
represents the indicator of a null mutant count, and N the total

number of cells at the end of the experiment. The conditional

distribution of X knowing N~n, is defined as before:

½X~1 DN~n �~e{pn :

Assume that s experiments have been repeated independently,

yielding s couples (xi,ni), where xi is 1 or 0 according to whether

zero or a positive number of mutants have been counted, and ni is

the final number of cells. The likelihood is the probability of the

observation:

L(p)~P
s

i~1
e{pnið Þxi 1{e{pnið Þ1{xi :

The likelihood depends only on the products pni. If all ni
’s are

divided by a given constant, then the maximum likelihood

estimator will be multiplied by the same constant. Since the ni’s

are very large and p very small, rescaling both can make the

calculation numerically more stable.

The log-likelihood and its derivatives are:

‘(p) ~
Ps
i~1

{pnixiz(1{xi) log 1{e{pnið Þ ,

d‘

dp
(p) ~

Ps
i~1

{nixiz
(1{xi)ni

epni {1
,

d2‘

dp2
(p) ~ {

Ps
i~1

(1{xi)n
2
i epni

epni {1ð Þ2
:

The maximum likelihood estimator p̂pml is the solution of
d‘

dp
(p̂pml)~0, and its asymptotic variance is computed from

{
d2‘

dp2
(p)

 !{1

(see [29]). This is essentially the method used

by de la Iglesia et al. [18] in a similar case.

Bivariate maximum likelihood estimation
In cases where no null mutant counts have been observed, or if

an estimate of the relative fitness is desired together with the

mutation rate, another procedure must be used. Estimating the

two parameters of a classical Luria-Delbrück distribution by the

method of maximum likelihood was proposed long ago

[8,12,31,32]. Using well known explicit formulas, the method

has been implemented [11,14,33]. In [15] it was shown that

similar algorithms apply not only to the classical Luria-Delbrück

distribution (in which division times are exponentially distributed),

but also to the so-called Haldane model in which distribution times

are supposed constant [34,35]. The situation here is only slightly

different. Instead of being considered as a sample of a fixed Luria-

Delbrück distribution, mutant counts can be viewed as indepen-

dent realizations of different distributions. Denote by LD(a,r) a

Luria-Delbrück distribution with expected number of mutations a
and relative fitness r. If a pair mutant count – final number (m,n)
has been observed, m is viewed as a realization of the LD(pn,r),
and the likelihood is computed accordingly. Thus the pair (p,r) is

jointly estimated, as the pair (a,r) in the constant final number

case.

Here is the mathematical model: for each experiment a pair of

numbers giving the number of mutants and the final number of

cells is obtained. An experiment is modelled by a couple (M,N) of

random variables, where M represents the number of mutants and

N the total number of cells at the end of the experiment. The

conditional distribution of M knowing N~n is assumed to be the

generalized Luria-Delbrück distribution GLD(pn,r,F). The no-

tation is that of [15]: the expected number of mutations a is the

product of p by the expected final number of cells, the relative

fitness (ratio of the growth rate of the population of normal cells

divided by that of mutants) is r, and the distribution of mutant

division times is given by F . As in [15], we assume that a model

has been chosen for the distribution of division times, so that only

the mutation probability p and the relative fitness r are to be

estimated.

The sample size being s, for i~1, . . . ,s experiment number i

has yielded a couple (mi,ni), where mi is the mutant count and ni

is the final number of cells. As in [14,15], we denote by qm(a,r) the

probability of a mutant count equal to m, under the Luria-

Delbrück distribution with parameters a (expected number of

mutations) and r (relative fitness). The computation algorithms of

the qm(a,r) are well known and will not be reproduced here: see

[12,14,15]. With that notation, the mutant count at the end of the

i-th experiment is equal to mi with probability qmi
(pni,r). No

assumption being made on the final counts, we consider the s-

tuple of mutant counts (mi)i~1,...,s as a realization of a sample of

independent random variables.

The log-likelihood is:

‘(p,r)~
Xs

i~1

log (qmi
(pni,r)) : ð4Þ

The computation of the gradient and Hessian of ‘(p,r) are only

slightly different from those needed for the calculation of the

maximum likelihood estimates of a and r in the classical case

[12,14]. In the formulas below, be shall omit the dependence in

(p,r) for clarity. The first and second derivatives of ‘ are evaluated

at (p,r), those of qmi
are evaluated at (pni,r). The gradient is

computed by:

L‘
Lp

~
Xs

i~1

ni

qmi

Lqmi

La
,

L‘
Lr

~
Xs

i~1

1

qmi

Lqmi

Lr
: ð5Þ

The Hessian is computed by:

L2‘

Lp2
~

Ps
i~1

n2
i

qmi

L2qmi

La2
{

n2
i

q2
mi

Lqmi

La

� �2

,

L2‘

LpLr
~

Ps
i~1

ni

qmi

L2qmi

LaLr
{

ni

q2
mi

Lqmi

La

� �
Lqmi

Lr

� �
,

L2‘

Lr2
~

Ps
i~1

1
qmi

L2qmi
Lr2 { 1

q2
mi

Lqmi
Lr

	 
2

:

ð6Þ
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The first and second derivatives of qm(a,r) in a and r are

obtained by recursive algorithms that will not be reproduced here

[12,14].

It is a well known fact in statistics, that the most easy looking

maximum likelihood problem usually conceals algorithmic diffi-

culties: numeric instability, bad conditionning of the Hessian, etc.

[36]. Here, the procedure looks straightforward from (5) and (6):

solving the gradient by a quasi-Newton or conjugate gradient

method should be done quite efficiently at low computing cost.

However, depending on the values in the sample, some

optimization techniques may be more efficient than others. For

the results described in this article, we have used the statistical

software R [22], and compared several optimization algorithms:

quasi-Newton, BFGS, conjugate gradient, simulated annealing

[37]. The calculation of the Hessian at the maximum likelihood

solution, which is needed to output asymptotic variances poses a

numerical problem, already signalled in [14]. For the results of the

article a numeric evaluation of the Hessian was used instead of (6)

[37]. In File S1, only the simplest method has been included: it

consists in solving the gradient by the Raphson-Newton method,

from (5) and (6). It is not the best method by far. We are presently

working on an optimized implementation, to be included in a

forthcoming R package.

Model for simulations
In the simulation study reported in the Results section, we have

chosen to draw samples of final numbers according to a log-

normal distribution with fixed expectation m and coefficient of

variation C. Other similarly shaped distributions could have been

used: gamma, inverse Gaussian, Weibull, etc. Our choice of the

log-normal was motivated by fitting real data, and by previously

published results: see [16] and references therein.

If some value of the mutation rate p has been fixed, and the final

number of cells N has been simulated, a mutant count can be

drawn according to a Luria-Delbrück distribution with expected

number of mutations a~pN and relative fitness r. As explained in

[15], an additional choice must be made: that of a probability

distribution for division times. Neither of the two extreme choices

that leads to computable versions of the Luria-Delbrück distribu-

Figure 2. Relative biases on estimates of a mutation rate. Relative biases are plotted as a function of the coefficient of variation C. The
different curves correspond to 20 values of a~mp from 0:1 to 2. Red curves show biases of the p0-method. For blue curves, the bias has been
corrected by the unbiasing factor (1). The correction maintains the bias under acceptable values even for relatively large a and C.
doi:10.1371/journal.pone.0101434.g002
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tion (exponential and constant division times) is realistic. We have

chosen the same distribution as in [15]: the best adjustment on

Kelly and Rahn’s observation on Bacterium aerogenes [38].

Simulations have been conducted for different sets of param-

eters. Results are reported for the following values, considered as

representative:

p~10{9 , m~109 , C~0:5, r~1 :

One thousand samples of size 50 of pairs (mutant counts – final

numbers) were simulated. For each sample, six estimates of p were

computed, together with their theoretical standard deviation.

N Classical methods: the estimate of the expected number of

mutations a was computed by two different methods: the p0-

method [1,5,28], and the maximum likelihood (ML) method

[12,31,32], both applied to the sample of mutant counts.

Dividing by the expected final number m, assumed to be

known, leads to two estimates for p.

N unbiased estimates: to each of the two previous estimates, the

unbiasing formulas (1) and (3) were applied, assuming that the

true value of the coefficient of variation was known which lead

to two more estimates of p. There again, the expected final

number m was supposed to be known, as well as the coefficient

of variation C.

N p0-method on the pairs: no prior information being assumed, the

maximum likelihood determination of p by the p0-method was

applied to the sample of pairs mutant counts – final numbers.

N maximum likelihood for p and r: taking againg the sample of pairs

with no prior information, a joint estimation for p was

obtained.

Treatment for published datasets
We have reexamined data from David [17], and Werngren &

Hoffner [21].

The data in Table 1 of [17] are not detailed, so only the p0-

method could be applied. The bias correction (1) was applied,

using a coefficient of variation of 0:35 (estimated from Table 2 in

the same reference).

Table 2 of [17] shows 10 pairs mutant counts – final numbers.

All possible estimates were computed together with their

confidence intervals. However, it must be remarked that standard

deviation computations rely upon asymptotic results, and do not

apply to such a small sample.

In Table 1 of [21] mutant counts are explicitly given. The

maximum likelihood estimate with exponential division time was

computed, then unbiased using a coefficient of variation of 0:44
(estimated from the given final counts).

Supporting Information

File S1 File S1 is a script of the R functions that have
been used for the simulation experiments described
here. It is a preliminary version of a forthcoming R package. The

functions have not been protected nor optimized.
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